skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baumann-Pickering, Simone"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decadal variations of ocean soundscapes are intricately linked to large-scale climatic and economic fluctuations. This study draws on over 15 years of acoustic recordings at six sites within the Southern California Bight, investigating interannual, seasonal, and diel variations. By examining acoustic energy from fin and blue whales along with sounds from ships and wind, we identified changes in soundscape over time and space. This study reveals that sound levels associated with both biological and non-biological sound sources varied seasonally and correlated with large-scale climatic patterns and long-term oceanographic fluctuations. Baleen whale sound levels before, during, and after a marine heatwave were assessed; sound levels decreased in southern sites and increased in northern sites adjacent to the California Current, underscoring the potential for range shifts and habitat compression during warm years for these species. Ship-generated sound levels at high-traffic sites reflected economic events such as recessions, labor shortages and negotiations, and changes to port activities. Marine soundscapes offer an approach to assess the ocean's condition amid ongoing climatic and economic fluctuations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract AimThis study investigates the biogeographic patterns of Pacific white‐sided dolphins (Lagenorhynchus obliquidens) in the Eastern North Pacific based on long‐term passive acoustic records. We aim to elucidate the ecological and behavioural significance of distinct echolocation click types and their implications for population delineation, geographic distribution, environmental adaptation and management. LocationEastern North Pacific Ocean. Time Period2005–2021. Major Taxa StudiedPacific white‐sided dolphin. MethodsOver 50 cumulative years of passive acoustic monitoring (PAM) data from 14 locations were analyzed using a deep neural network to classify two distinct Pacific white‐sided dolphin echolocation click types. The study assessed spatial, diel, seasonal and interannual patterns of the two click types, correlating them with major environmental drivers such as the El Niño Southern Oscillation and the North Pacific Gyre Oscillation, and modeling long‐term spatial‐seasonal patterns. ResultsDistinct spatial, diel and seasonal patterns were observed for each click type. Significant biogeographical shifts in presence were observed following the 2014–2016 marine heatwave event. Main ConclusionsDistinct spatial distributions of the two click types support the hypothesis that Pacific white‐sided dolphins produce population‐specific echolocation clicks. Seasonal and diel patterns suggest spatiotemporal niche partitioning between the populations in Southern California. Interannual changes, notably initiated during the 2014–2016 marine heatwave, indicate climate‐driven range expansions and contractions related to gradual tropicalization of the Southern California Bight. 
    more » « less
  3. Abstract The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose‐beaked whales (Ziphius cavirostris). Goose‐beaked whales are deep‐diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that goose‐beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in goose‐beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Goose‐beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in goose‐beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with goose‐beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact goose‐beaked whales. 
    more » « less
  4. Abstract The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable, and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters. 
    more » « less
  5. 2022 marked the third consecutive La Niña and extended the longest consecutive stretch of negative Oceanic Niño Index since 1998-2001. While physical and biological conditions in winter and spring largely adhered to prior La Niña conditions, summer and fall were very different. Similar to past La Niña events, in winter and spring coastal upwelling was either average or above average, temperature average or below average, salinity generally above average. In summer and fall, however, upwelling and temperature were generally average or slightly below average, salinity was close to average and chlorophyllawas close to average. Again, as during prior La Niña events, biomass of northern/southern copepods was above/below average off Oregon in winter, and body size of North Pacific krill in northern California was above average in winter. By contrast, later in the year the abundance of northern krill dropped off Oregon while southern copepods increased and body sizes of North Pacific krill fell in northern California. Off Oregon and Washington abundances of market squid and Pacific pompano (indicators of warm, non-typical La Niña conditions) were high. In the 20thcentury, Northern anchovy recruitment tended to be high during cold conditions, but despite mostly warm conditions from 2015-2021 anchovy populations boomed and remained high in 2022. Resident seabird reproductive success, which tended in the past to increase during productive La Niña conditions was highly variable throughout the system as common murre and pelagic cormorant, experienced complete reproductive failure at Yaquina Head, Oregon while Brandt’s cormorant reproduction was average. At three sampling locations off central California, however, common murre reproduction was close to or above average while both pelagic and Brandt’s cormorant were above average. California sealion reproduction has been above average each year since 2016, and pup weight was also above average in 2022, likely in response not to La Niña or El Niño but continuous high abundance of anchovy. The highly variable and often unpredictable physical and biological conditions in 2022 highlight a growing recognition of disconnects between basin-scale indices and local conditions in the CCE. “July-December 2022 is the biggest outlier from individual “strong” La Niña (events) ever going back to the 50s.” – Nate Mantua 
    more » « less
  6. In late 2020, models predicted that a strong La Niña would take place for the first time since 2013, and we assessed whether physical and biological indicators in 2021 were similar to past La Niñas in the California Current Ecosystem (CCE). The Pacific Decadal Oscillation and Oceanic Niño Index indeed remained negative throughout 2021; the North Pacific Gyre Oscillation Index, however, remained strongly negative. The seventh largest marine heatwave on record was unexpectedly present from April to the end of 2021; however, similar to past La Niñas, this mass of warm water mostly remained seaward of the continental shelf. As expected from past La Niñas, upwelling and chlorophyll were mostly high and sea surface temperature was low throughout the CCE; however, values were close to average south of Point Conception. Similar to past La Niñas, abundances of lipid-rich, northern copepods off Oregon increased. In northern California, unlike past La Niñas, the body size of North Pacific krill (Euphausia pacifica) was close to average. Predictably, overall krill abundance was above average in far northern California but, unexpectedly, below average south of Cape Mendocino. Off Oregon, similar to past La Niñas, larval abundances of three of six coastal species rose, while five of six southern/offshore taxa decreased in 2021. Off California, as expected based on 2020, Northern Anchovy (Engraulis mordax) were very abundant, while Pacific Sardine (Sardinops sagax) were low. Similar to past La Niñas, market squid (Doryteuthis opalescens) and young of the year (YOY) Pacific Hake (Merluccius pacificus), YOY sanddabs (Citharichthysspp.), and YOY rockfishes (Sebastesspp.) increased. Southern mesopelagic (e.g., Panama lightfishVinciguerria lucetia, Mexican lampfishTriphoturus mexicanus) larvae decreased as expected but were still well above average, while northern mesopelagic (e.g., northern lampfishStenobrachius leucopsarus) larvae increased but were still below average. In line with predictions, most monitored bird species had above-average reproduction in Oregon and California. California sea lion (Zalophus californianus) pup count, growth, and weight were high given the abundant Anchovy forage. The CCE entered an enduring La Niña in 2021, and assessing the responses of various ecosystem components helped articulate aspects of the system that are well understood and those that need further study. 
    more » « less
  7. The California Current System (CCS) has experienced large fluctuations in environmental conditions in recent years that have dramatically affected the biological community. Here we synthesize remotely sensed, hydrographic, and biological survey data from throughout the CCS in 2019–2020 to evaluate how recent changes in environmental conditions have affected community dynamics at multiple trophic levels. A marine heatwave formed in the north Pacific in 2019 and reached the second greatest area ever recorded by the end of summer 2020. However, high atmospheric pressure in early 2020 drove relatively strong Ekman-driven coastal upwelling in the northern portion of the CCS and warm temperature anomalies remained far offshore. Upwelling and cooler temperatures in the northern CCS created relatively productive conditions in which the biomass of lipid-rich copepod species increased, adult krill size increased, and several seabird species experienced positive reproductive success. Despite these conditions, the composition of the fish community in the northern CCS remained a mixture of both warm- and cool-water-associated species. In the southern CCS, ocean temperatures remained above average for the seventh consecutive year. Abundances of juvenile fish species associated with productive conditions were relatively low, and the ichthyoplankton community was dominated by a mixture of oceanic warm-water and cosmopolitan species. Seabird species associated with warm water also occurred at greater densities than cool-water species in the southern CCS. The population of northern anchovy, which has been resurgent since 2017, continued to provide an important forage base for piscivorous fishes, offshore colonies of seabirds, and marine mammals throughout the CCS. Coastal upwelling in the north, and a longer-term trend in warming in the south, appeared to be controlling the community to a much greater extent than the marine heatwave itself. 
    more » « less
  8. null (Ed.)